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LElTER TO THE EDITOR 

Electric bi-refringence of branched polymers 
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$ Tel Aviv University, Chemistry Department, 69978 Ramat Aviv, Israel 

Received 29 May 1990 

Abstract. We calculate the transient electric bi-refringence B( 1 )  when an electric field is 
applied to polarizable, randomly branched, polymers in a dilute solution. We find that it 
relaxes with time as a stretched exponential, B( t )  - exp(-tu). The exponent a is calculated 
both for a single mass N and for the very broad, percolation-like distribution of masses 
that is usually obtained when one synthesizes such polymers. In the former case, such 
experiments would show the difference between the statistics of lattice animals and that 
of swollen polymers. The latter case exhibits the influence of the mass distribution on the 
long time relaxation properties. The calculations are made both in the Zimm approximation 
for the hydrodynamics, and in the Rouse limit, where screening of the hydrodynamic 
interaction occurs at large distances for the stretched configurations. 

The static and dynamic properties of randomly branched polymers have been under 
strong investigation these last few years [ 1-61. Their fractal structure was observed by 
light [7] and neutron [8] scattering experiments as well as by viscoelastic measurements 
[9,10]. Several modes of synthesis were used, such as polycondensation of multifunc- 
tional units [ 11,121, crosslinking of pre-existing linear polymers by irradiation [ 131 or 
by end-linking [14] and, very recently, biopolymers [15]. The most important result 
in these studies is that it seems that percolation is an important universality class for 
the description of the synthesis of such branched polymers. As a result, there is a 
natural distribution of molecular weights, similar to the cluster distribution function 
in percolation [ 161, which is extremely wide. This is called polydispersity. It increases 
as one tries to get larger polymers by approaching the gelation threshold. This remains 
valid when one adds excess solvent to the preformed polymers, so that the resulting 
solution is dilute. In what follows, we will consider the latter case. Thus the various 
macromolecules are assumed to be dispersed in an excess of solvent and are far from 
each other. The solvent is assumed to be a good solvent [ 171. Because of  the polydisper- 
sity, one does not observe directly the fractal dimension of the polymers, but rather 
an effective dimension that is related both to the dimension of each macromolecule 
and to the exponent of the (number) distribution P ( N ,  E ) .  The latter is the number of 
polymers made of N monomers at a distance E = J p  -pel from the threshold. It has 
been demonstrated by several groups that under these conditions, the effective fractal 
dimension of the polydisperse ensemble of polymers is indeed different from that of 
the individual polymers, given in terms of lattice animals [18]. 

Summing up these results, one may say that a dilute solution of randomly branched 
polymers in a good solvent is very polydisperse with a distribution P (  N, E )  of molecular 
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weights, and that each polymer has the same fractal dimension Do as a lattice animal. 
Thus the average radius R ( N )  of a polymer is related to its number N of monomers 
by the usual relation: 

N - R ( N ) %  (1) 

We are interested in finding out whether the swollen macromolecules actually follow 
the same statistics as the lattice animals or not. This may be characterized for instance 
by the probability G(R) of finding any two ends at a distance R. In what follows, we 
discuss a possible experimental technique related to the K e n  effect, that allows for 
the measurement of the large-distance behaviour of such a function. This method has 
been recently used by Degiorgio et a1 [19] who studied the large distance behaviour 
of G( R )  for linear chains. They found a characteristic stretched exponential behaviour 
for the relaxation of the electric bi-refringence that could be directly related to the 
exponential form of G( R ) .  We would like to extend their results to the case of randomly 
branched polymers. One may think of two possible types of experiments, either with 
the natural, polydisperse, distribution that we discussed above, or with a monodisperse 
solution, obtained by suitable fractionation of the previous one. Such fractionation 
has already been made on different samples [8,20,21] in order to study their fractal 
structure. 

In a typical transient electric bi-refringence experiment [22], one applies a rec- 
tangular electric pulse to a polarizable polymer in a dilute solution and studies the 
transient evolution of the bi-refringence towards equilibrium. The advantage of the 
method is that it tests directly all the possible conformations of a polymer, including 
the large, improbable fluctuations included in the distribution G( R ) .  As explained by 
Degiorgio et al, the relaxation of the bi-refringence B ( t )  as a function of time in the 
transient regime is directly related to the distribution of distances: 

B ( t )  = dR S ( R ) G ( R )  J 
where S ( R )  is a signal function that has at worst a power-law behaviour, and T ( R )  
the relaxation time of a polymer with given distance between surface monomers. The 
precise form of S ( R )  is not important for our purpose because we will be interested 
only in the long-time behaviour of B ( t ) .  Let us note, however, that its precise form 
would be very interesting for the study of short-time behaviour, and may allow the 
measurement of the short-distance behaviour of G(R). The latter involves the exponent 
6 (or y for linear chains) that has not been measured so far. As we will see, the 
long-time behaviour is governed by stretched exponentials, and thus for our purpose, 
as long as this signal function does not have any exponential part, we may ignore 
safely its variation. 

The average relaxation time T (  N )  of a polymer in a dilute solution has been studied. 
In such dilute solutions, it is known that hydrodynamic interactions [23,24] have to 
be taken into account, and that each macromolecule follows a Zimm-type dynamics. 
Thus the average characteristic time T (  N )  for a macromolecule made of N monomers, 
with average radius R (  N )  is [ 1,241 

T( N )  - R (  N)3. ( 3 a )  

The most direct hypothesis about the relaxation time of the stretched configurations 
is to assume that relation ( 3 a )  holds generally for every configuration with distance 
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R. Therefore we have, for any R 

T(R,  N) - R3. ( 3 b )  
Some years ago however, Pincus [25] showed that the relaxation time rp for a polymer 
chain stretched by an external force should rather follow a Rouse-type dynamics. This 
is because a screening of the hydrodynamic interactions occurs in the stretched 
configurations. If we assume that such an effect is also present for the large fluctuations, 
it is possible to find the characteristic time by assuming a scaled form for the time: 

T (  R, N )  = N3ID0f ( R I  N""0). 

T p ( ~ ,  N) - R * + D o N ( ' - ~ o ) / ~ o ( R  >> N~IDo). 

(4) 
The R dependence of the Rouse time is known. Assuming that f (x )  in relation (4) 
behaves as a power-law, we get 

(3c) 
However, the experimental results of Degiorgio et al [19] seem to be better fitted by 
the Zimm time. We will therefore present our results both in the Zimm and Rouse 
approximations, which correspond to relations (36) and ( 3 c )  respectively. 

The final point to be discussed in relation (2) is the distribution G( R). For a given 
mass N, the above-mentioned R( N )  is only an average over all the configurations that 
may be assumed by a polymer. We know from previous studies that because of the 
wide fluctuations, there is a distribution of distances G(R) which was carefully studied 
for linear chains [ 1,261. The latter study may be generalized directly to the branched 
polymers which we are considering. This is because the chemistry is already performed, 
as in the self-avoiding walk problem. Thus the only fluctuations that are allowed to 
any given polymer are related to stretched configurations. This implies that the large- 
distance behaviour of the distance distribution G( R)  is related to the fractal dimension 
Do of the polymer. Following the same arguments as for linear chains, we find, for 
large distances: 

G(R)  -exp[-(RDo/ N)l/(Do-ll 1 R >> R(N) .  ( 5 )  
Equation ( 5 )  is different from what is expected in the lattice animal problem. A different 
exponent is obtained then, and is related to the various chemical configurations that 
are possible rather than to the distance fluctuations at given chemistry. 

In a polydisperse solution, one has to take into account, in addition to this 
distribution of distances for a given value of N, a distribution of molecular weights: 
the probability of finding a polymer made of N monomers is, following Stauffer [16]: 

( 6 a )  
where the exponents T and U are percolation exponents. Introducing the z-average 
molecular weight [ 171 

P(N,  E )  - N-' e-NE1''7 

N, = N3P(N, E )  d N  -&-1/o 5 N2P(N,  E )  d N  (7) 

and inserting (7) in (6a ) ,  we get 
P( N, E )  - N-' (66)  

The relaxation of the bi-refringence may be readily calculated both for a mono- 
disperse and a polydisperse solution. Let B N ( f )  and Bp(t)  be the functions in these 
respective cases. They are related through 

Bp(t) = J B,(t)P(N, E )  dA? (8) 
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In the case of a fractionated sample with a single molecular weight N, we have, 
using the previous results and the Zimm assumption 

B N ( t )  = S ( R )  e~p[- (R~o/N)”‘~o-’ ’ ]  exp(-t/R3) dR. (9) 

B N ( t )  - e ~ p [ - ( t / N ~ / ~ o ) ~ o / ( ~ ~ , - ~ )  1 (loa) 

The integral is estimated by the steepest-descent method. We find 

and, using the accepted value, Do = 2 for d = 3, we get in the Zimm case and for a 
monodisperse solution: 

(Zimm). ( lob )  3 /2  2 / 5  BN(f)-exp[-(t /N 1 
In the other limit, if we accept the idea of screening of the hydrodynamic interactions 

for the extended fluctuations, the dynamics is a Rouse-type instead of the Zimm 
approach. The characteristic relaxation time is now given by relation ( 3 c )  instead of 
equation (3a). For d = 3 ,  we have Do=2,  and 

T ~ ( R )  - R4N-”*. 

Using the same approach as above, we get 

B N (  t )  - exp[-( t /  (Rouse). 
Two points are worth being discussed when one compares equations ( lob )  and (1Oc). 
The first one is that the change in the hydrodynamic assumption implies a large change 
in the exponent of the stretched exponential, which varies from 0.4 when hydrodynamic 
interactions are present, in the Zimm case, to 5 in the Rouse case, when no hydrodynamic 
interactions are present beyond a distance of the order of the equilibrium radius of 
the polymer. That the Rouse dynamics is slower is an expected result because (i) the 
solvent motion enhances the polymer motion in the Zimm case, and (ii) the friction 
coefficient increases linearly with N in the Rouse case. The difference in the values 
of the exponents is amenable to experimental observation. Such an experiment on a 
fractionated sample is thus interesting both in order to check the value of the exponent 
in the distribution function G( R),  and the kind of dynamics that governs the stretched 
conformations of a branched polymer. 

The second point to be noted is that both characteristic times in the Zimm and 
Rouse cases, relations ( l o b  and lOc), behave as the average relaxation time T ( N ) ,  
relation (3a ) .  Namely, although the stretched configurations have a slower, Rouse-like, 
dynamics, the average relaxation time is still consistent with a Zimm dynamics, as it 
should in a dilute solution. 

As discussed above, when no special fractionation is made, the solution is naturally 
polydisperse, and the measured bi-refringence Bp( t )  is the average of the above result 
on the entire distribution of molecular weights, relation ( 6 b ) :  

B,( t )  = B N ( t ) N - ‘  dN. (11) I 
Calculating again the above integral by steepest descent and neglecting the power-law 
prefactors, we get in the Zimm case 

(Zimm) , (12a) 3/2 1/4 B p ( f )  - exp[(-t/N, ) 1 
Similarly, using relation (lOc), we get in the Rouse case 

(Rouse). 3/2 2 / 9  Bp(f)-exp[-(t/Nz 1 1 
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Relations (12) are expected to hold for large times, larger than N:’*. For shorter times 
power-law corrections are expected to be present. However, because we do not know 
the precise form of the signal function S ( R ) ,  relation (2), it is not possible to provide 
explicit forms. The various exponents are summarized in table 1, which shows that 
there is a significant difference between the respective values for the mono- and 
polydisperse cases. The stretched exponentials derived above result from a broad 
distribution of relaxation times T ( R ) .  It has been shown that such large distributions 
are common to a wide range of complex systems, where similar stretched exponential 
behaviour is observed [27]. 

Table 1. The exponents for the time dependences for dilute solutions of polymers. Mono- 
disperse corresponds to fractionated samples, polydisperse to the natural polydispersity. 
Zimm corresponds to the presence of backflow effects in the solvent and Rouse to the 
screening of the latter for stretched configurations. We included the linear chain case, for 
which Zimm is the Degiorgio result. 

Zimm Rouse 

I Branched monodisperse = 0.4 3 
Branched polydisperse 5 = 0.22 I 

U -  Linear = 0.45 37 - 0.41 
~~ ~~ ~~ 

We considered the transient electric bi-refringence of randomly branched polymers 
in dilute solutions. Because this technique probes all the configurations of a 
macromolecule, it allows for the determination of the distribution function G(R) .  The 
obtained relaxation patterns are stretched exponential. We calculated the exponents 
of the time dependences both for a monodisperse polymer, corresponding to a fraction- 
ated sample, and for the whole distribution of molecular weights. The latter was 
previously shown to be identical in most cases to the distribution of percolation clusters 
in the percolation problem. The calculations were made under two different assump- 
tions. In the first one, following Degiorgio et al [19], we assumed that the relaxation 
of stretched configurations follows a Zimm-type hydrodynamics, with backflow effects 
present. In the second one, we assumed, following previous work by Pincus on stretched 
polymers, that there are screening effects at distances larger than the average radius 
of the macromolecule. This second assumption corresponds to a Rouse-type dynamics 
for the stretched configurations. The results are summarized in table 1. Although we 
think that the second assumption should provide a better description, the Degiorgio 
experimental results on linear polymers [22] seem to favour the first one. We have 
included in table 1 the corresponding exponents for linear chains. We believe that it 
would be very interesting to check these time dependences both in the mono- and 
polydisperse cases. In the former, we assumed that the behaviour of the distribution 
is related to the stretched configurations of a polymer. This implies that the statistics 
of branched polymers should be different from that of a lattice animal, although the 
fractal dimensions are identical in both problems. It would also be very interesting to 
observe the slowing down of the relaxation related to the presence of very large 
polymers, with sizes bigger than the z-average size N, that are usually observed in 
static experiments. 
The authors are much indebted to M Delsanti for related discussions. Part of this work 
was done while the authors were attending a workshop on Large Scale Molecular 
Systems, in Maratea, Italy. They wish to thank A Amann, A Blumen, W Gans and R 
Silbey for their warm hospitality. 
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